A microfluidic platform for evaporation-based salt screening of pharmaceutical parent compounds.

نویسندگان

  • Sachit Goyal
  • Michael R Thorson
  • Cassandra L Schneider
  • Geoff G Z Zhang
  • Yuchuan Gong
  • Paul J A Kenis
چکیده

We describe a microfluidic platform to screen for salt forms of pharmaceutical compounds (PCs) via controlled evaporation. The platform enables on-chip combinatorial mixing of PC and salt former solutions in a 24-well array (~200 nL/well), which is a drastic reduction in the amount of PC needed per condition screened compared to traditional screening approaches that require ~100 μL/well. The reduced sample needs enable salt screening at a much earlier stage in the drug development process, when only limited quantities of PCs are available. Compatibility with (i) solvents commonly used in the pharmaceutical industry, and (ii) Raman spectroscopy for solid form identification was ensured by using a hybrid microfluidic platform. A thin layer of elastomeric PDMS was utilized to retain pneumatic valving capabilities. This layer is sandwiched between layers of cyclic-olefin copolymer, a material with low air and solvent permeability and low Raman background to yield a physically rigid and Raman compatible chip. A solvent-impermeable thiolene layer patterned with evaporation channels permits control over the rate of solvent evaporation. Control over the rate of solvent evaporation (2-15 nL h(-1)) results in consistent, known rates of increase in the supersaturation levels attained on-chip, and increases the probability for crystalline solids to form. The modular nature of the platform enables on-chip Raman and birefringence analysis of the solid forms. Model compounds, tamoxifen and ephedrine, were used to validate the platform's ability to screen for salts. On-chip Raman analysis helped to identify six different salts each of tamoxifen and ephedrine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystallization Optimization of Pharmaceutical Solid Forms with X‐ray Compatible Microfluidic Platforms

We describe a microfluidic approach to optimize crystallization of active pharmaceutical ingredients (APIs) and their solid forms (cocrystals) via crystal seeding. Subsequent on-chip X-ray diffraction is used to verify the crystal from. The microfluidic platform comprises an 8 × 9 well array that enables screening of seeding conditions (dilutions) by metering of API solution or API/cocrystal fo...

متن کامل

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

A Double Emulsion-Based, Plastic-Glass Hybrid Microfluidic Platform for Protein Crystallization

This paper reports the design and construction of a plastic-glass hybrid microfluidic platform for performing protein crystallization trials in nanoliter double emulsions. The double emulsion-based protein crystallization trials were implemented with both the vapor-diffusion method and microbatch method by controlling the diffusion of water between the inner and outer phases and by eliminating ...

متن کامل

Microfluidic Platform for the Simultaneous Generation of Four Independent Gradients: towards the High Throughput Screening of Trace Elements for Bone Tissue Engineering

We propose a microfluidics-based cell-culture platform for the screening of trace elements in bone tissue engineering. With this platform, it is possible to create four stable, independent and perpendicular diffusion-based concentration gradients in a single square chamber, in which cells are cultured. This allows examining the combined effect of four compounds in a single assay.

متن کامل

A Stochastic Model for Nucleation Kinetics Determination in Droplet-Based Microfluidic Systems.

The measured induction times in droplet-based microfluidic systems are stochastic and are not described by the deterministic population balances or moment equations commonly used to model the crystallization of amino acids, proteins, and active pharmaceutical ingredients. A stochastic model in the form of a Master equation is formulated for crystal nucleation in droplet-based microfluidic syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 13 9  شماره 

صفحات  -

تاریخ انتشار 2013